Survival Probabilities for Random Walks on Lattices with Randomly Distributed Traps

Edoardo Milotti ${ }^{1}$

Received April 19, 1991; final March 3, 1922

Abstract

I present here a numerical procedure to compute survival probabilities for random walks on lattices with randomly distributed traps. The procedure has some advantages over existing methods, and its performance is evaluated for the 1D simple random walk, for which some exact results are known. Thereafter, I apply the procedure to 1 D random walks with variable step length and to 3D simple random walks.

KEY WORDS: Lattice random walk; trapping; number of distinct lattice points visited; survival probabilities.

1. INTRODUCTION

Random walks on lattices with randomly distributed traps serve as models for many physical processes in which absorption and emission occur. ${ }^{(1,2)}$ In spite of their conceptual clarity and simplicity, these models often defy exact mathematical analysis. Indeed, most of the existing exact results are limited to 1 D random walks with transitions to nearest neighbors only.

Apparently, the stochastic nature of these models makes them well suited to brute-force Monte Carlo simulations, but in this case useful studies take up an enormous amount of computer time. In fact, the probability that a random walker survives a n-step walk is a rapidly decreasing function of n, and to explore the large- n behavior one must generate a huge number of random walks and random trap configurations. Moreover, the lower the concentration of traps, the higher the probability that the random walker is trapped at large n; therefore the scope of the method is rather limited.

[^0]The gap between exact results and brute-force simulations has been filled by several workers who have produced approximate results. Those studies concentrate mainly on two quantities: the number $\left\{S_{n}\right\}$ of distinct sites visited by a random walker in an n-step unrestricted walk, and the n-step survival probabilities $\left\{f_{n}\right\}$ in the presence of traps.

Basically, the relevance of the S_{n} 's comes from their relationship with the f_{n} 's:

$$
\begin{equation*}
f_{n}=\left\langle(1-c)^{S_{n}}\right\rangle \tag{1}
\end{equation*}
$$

Here c is the concentration of traps and $\langle\cdot\rangle$ denotes the average over all n-step unrestricted walks [in formula (1) the average over all trap configurations has already been taken]. In his original paper on luminescent emission in organic solids with traps Rosenstock ${ }^{(3)}$ approximated (1) by moving the average to the exponent:

$$
\begin{equation*}
f_{n} \approx(1-c)^{\left\langle S_{n}\right\rangle} \tag{2}
\end{equation*}
$$

The Rosenstock approximation (2) has been shown to work reasonably well only for very small concentrations (see, e.g., ref. 4).

It turns out that (2) is just the first of a series of approximations derived after truncation of the so-called "cumulant expansion," ${ }^{(2)}$ where the "cumulants" are simply expressed in terms of the central moments of the distribution $P\left(S_{n}\right)$ of the $S_{n}{ }^{\prime}$ s. Only the first moment $\left\langle S_{n}\right\rangle$ can be computed without too much trouble using the generating function formalism, ${ }^{(5)}$ and analytic results also exist for the second central moment. However, to compute the higher moments, one must resort to Monte Carlo simulation of unrestricted walks. This is no longer a direct simulation of the trapping problem; hence it is free from the simulation time problems mentioned above. These expansions work quite well for short walks, but they all break down badly for longer walks. ${ }^{(2)}$

In addition, I wish to mention a wealth of asymptotic formulas, both for the $S_{n}{ }^{\prime} s^{(6)}$ and for the $f_{n}{ }^{\prime} \mathrm{s}^{(7-9)}$: these formulas set the goal for all numerical efforts. ${ }^{(8,10)}$ (Cfr. [8] and [10].)

In this paper I present a numerical approximation which is in some way similar to the cumulant expansion and to the work of Zumofen and Blumen, ${ }^{(5)}$ but which is much better behaved. In Section 2, I describe the approximation, apply it to the 1D simple random walk, and compare the numerical results with the asymptotic formula of Anlauf. ${ }^{(8)}$ In Section 3, I give numerical results for the 1D random walk with transitions to nearest neighbors (NN) and next-nearest neighbors (NNN) and for the 3D simple random walk.

2. THE PROCEDURE

Consider a simple random walker which has already taken $n-1$ steps on the lattice. Some of the lattice sites that can be reached at the next step have already been visited, while others may be new to the walker. Let p_{n} be the fraction of new sites. Then p_{n} is also the probability of visiting a new site at the nth step, and $c p_{n}$ is the probability of falling on a trap at the nth step. Therefore the probability that this walker is still free after the nth step is

$$
\begin{equation*}
\tilde{f}_{n}=\left(1-c p_{n}\right) \tilde{f}_{n-1} \tag{3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
f_{n}=\prod_{k=0}^{n}\left(1-c p_{k}\right) \tag{4}
\end{equation*}
$$

where it is assumed that the origin may also be a trap, and one defines $p_{0} \equiv 1$. Then, taking the average over all walks, one has

$$
\begin{equation*}
f_{n}=\left\langle\tilde{f}_{n}\right\rangle=\left\langle\prod_{k=0}^{n}\left(1-c p_{k}\right)\right\rangle \tag{5}
\end{equation*}
$$

Equation (5) can also be written as a recurrence formula:

$$
\begin{equation*}
f_{n}=f_{n-1}-c\left\langle p_{n} \tilde{f}_{n-1}\right\rangle \tag{6}
\end{equation*}
$$

Notice also that $\left\langle p_{n}\right\rangle$ is just the average number of new sites visited by the random walker at the nth step, and therefore $\left\langle p_{n}\right\rangle=A_{n}$ in the usual notation of Montroll and Weiss. ${ }^{(11,1)}$

Equation (5) or (6) shows that if one neglects correlations, then

$$
\begin{equation*}
f_{n} \approx \prod_{k=0}^{n}\left(1-c \Delta_{k}\right) \tag{7}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
f_{n} \approx\left(1-c A_{n}\right) f_{n-1}=f_{n-1}-c d_{n} f_{n-1} \tag{8}
\end{equation*}
$$

Moreover, if $c \ll 1$, then

$$
\begin{equation*}
\log f_{n} \approx \sum_{k=0}^{n} \log \left(1-c \Delta_{k}\right) \approx-c \sum_{k=0}^{n} \Delta_{k}=-c\left\langle S_{n}\right\rangle \approx\left\langle S_{n}\right\rangle \log (1-c) \tag{9}
\end{equation*}
$$

and one recovers the Rosenstock approximation (2). ${ }^{2}$

[^1]Equation (7) or (8) is still only an approximate formula, but one can do better by including some of the missing correlation, namely applying the recurrence formula (3) twice, so that

$$
\begin{align*}
\mathcal{f}_{n} & =\left(1-c p_{n}\right)\left(1-c p_{n-1}\right) \tilde{f}_{n-2} \\
& =\tilde{f}_{n-2}-c\left(p_{n}+p_{n-1}\right) \tilde{f}_{n-2}+c^{2} p_{n} p_{n-1} \tilde{f}_{n-2} \tag{10}
\end{align*}
$$

After averaging, if one still neglects the correlations between the p_{n} 's and the f_{n} 's, this gives

$$
\begin{align*}
f_{n} & \approx f_{n-2}-c\left(A_{n}+A_{n-1}\right) f_{n-2}+c^{2}\left\langle p_{n} p_{n-1}\right\rangle f_{n-2} \\
& =\left[1-c\left(A_{n}+A_{n-1}\right)+c^{2}\left\langle p_{n} p_{n-1}\right\rangle\right] f_{n-2} \tag{11}
\end{align*}
$$

Though still approximate, (11) displays explicitly the correlation between the two last steps: moreover, this correlation involves only probabilities that may be computed from unrestricted random walks. It is difficult to compute this correlation analytically, but it can be found by Monte Carlo simulation of unrestricted walks, just like the moments $\left\langle S_{n}^{k}\right\rangle$ required for the cumulant expansions. It must also be remarked that in order to compute (11), one needs two starting values for the survival probabilities:

$$
\begin{align*}
& f_{0}=(1-c) \\
& f_{1}=(1-c)\left(1-c A_{1}\right) \tag{12}
\end{align*}
$$

(f_{1} is exact, since for all random walks $p_{1}=\Delta_{1}$).
It is now possible to proceed further, and include the correlations among the last three steps, and so on. Then one obtains recurrence formulas similar to (11). Three or more starting values are required, and they must be found by direct enumeration.

In what follows the procedure shall be denoted by PFP (probability factorization procedure), and the " j th-order" PFP is the approximation obtained by expanding the first j factors in expression (5). For example, (11) is the second-order approximation. The j th-order approximation requires j starting values.

To test the PFP, I used the asymptotically exact expression ${ }^{(8)}$ for the survival probabilities of the 1 D simple random walk,

$$
\begin{equation*}
f_{n}=\frac{8}{\pi}\left(\frac{2}{3 \pi}\right)^{1 / 2} x^{3 / 2} \exp \left(\frac{-3 x}{2}\right)\left\{1+\frac{17}{18} \frac{1}{x}+\frac{205}{648} \frac{1}{x^{2}}-\frac{3115}{34992} \frac{1}{x^{3}}+O\left(\frac{1}{x^{4}}\right)\right\} \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
x=[-\pi \log (1-c)]^{2 / 3} n^{1 / 3} \tag{14}
\end{equation*}
$$

Fig. 1. Some of the correlation terms from the Monte Carlo simulation of the unrestricted 1 D simple random walk. $\left\langle p_{n} p_{n-1}\right\rangle,\left\langle p_{n} p_{n-1} p_{n-2}\right\rangle$, and $\left\langle p_{n} p_{n-1} p_{n-2} p_{n-3}\right\rangle$ appear, respectively, as the top, middle, and bottom data.

I computed the Δ_{n} 's exactly, using a series inversion method similar to that used by Zumofen and Blumen, ${ }^{(5)}$ and the averages $\left\langle p_{n} p_{n-1} \cdots p_{n-j+1}\right\rangle$ with a Monte Carlo simulation of the unconstrained walks. The starting values for the survival probabilities are easily found from direct enumeration of short walks. ${ }^{3}$ I have generated $10^{5} 1 \mathrm{D}$ unrestricted simple random walks, 1000 steps long. To choose the direction of each step, I have used a Tausworthe-type random bit generator ${ }^{(12)}$ with $p=9689, q=4187$, where p and q are the exponents in the (irreducible) polynomial associated with the random bit recurrence formula. ${ }^{(13)}$ With such a generator one can safely simulate random walks less than 10^{4} steps long, since linear relationships among bits appear only after $p=9689$ steps.

Figure 1 shows some of the correlation terms $\left\langle p_{n} p_{n-1} \cdots p_{n-j+1}\right\rangle$
${ }^{3}$ It turns out that for all simple random walks on D-dimensional cubic lattices the first four p_{n} 's are constant,

$$
p_{0}=A_{0}=1, \quad p_{1}=A_{1}=1, \quad p_{2}=A_{2}=\frac{2 D-1}{2 D}, \quad p_{3}=\Delta_{3}=\frac{2 D-1}{2 D}
$$

and therefore for these walks the calculation of the first five f_{n} 's is trivial,

$$
\begin{array}{ll}
f_{0}=f_{0}=1-c, & f_{1}=f_{1}=(1-c)^{2} \\
f_{2}=f_{2}=(1-c)^{2}\left(1-c \frac{2 D-1}{2 D}\right), & f_{3}=f_{3}=(1-c)^{2}\left(1-c \frac{2 D-1}{2 D}\right)^{2} \\
f_{4}=\left\langle\left(1-c p_{4}\right) f_{3}\right\rangle=\left\langle\left(1-c p_{4}\right)\right\rangle f_{3}=\left(1-c A_{4}\right) f_{3}
\end{array}
$$

obtained from the Monte Carlo program and used by PFP. The same program was used to compute the averages $\left\langle S_{n}^{k}\right\rangle$ (up to $k=4$) needed for the cumulant expansion. The first four cumulant approximations of f_{n} are shown in Fig. 2, while the results of PFP up to fourth order are shown in Fig. 3.

The computed values of f_{n} are plotted versus x, the scaled step number of (14): the advantage of using x instead of n is that the plots, at least asymptoticaliy, do not depend on the concentration (for the record, I always used $c=0.4$ in these simulations).

The PFP is free from the divergence problems of the cumulant expansion and seems to reproduce reasonably well the asymptotic behavior (13), at least for step numbers that are not too large. For large step numbers the correlation terms approach constant values, so that the approximated survival probabilities eventually behave like simple exponentials.

The difference between the second and the first-order approximations [expressions (11) and (7), denoted by $f_{n}^{(2)}$ and $f_{n}^{(1)}$] can be expressed by

$$
\begin{align*}
\log f_{n}^{(2)}-\log f_{n}^{(1)} & \approx c^{2}\left(\left\langle p_{n} p_{n-1}\right\rangle-\Delta_{n} \Delta_{n-1}\right) \\
& =c^{2} \operatorname{Cov}\left(p_{n} p_{n-1}\right) \tag{15}
\end{align*}
$$

Figure 3 shows that with increasing order k the difference $\log f_{n}^{(k+1)}-\log f_{n}^{(k)}$ decreases and has the same order of magnitude as

Fig. 2. The first four cumulant approximations for the survival probabilities for the 1 D simple random walk. The solid line is the asymptotically exact expression (13) (for $c=0.4$), while the dashed lines show the first four cumulants. The data are plotted vs. the scaling variable x (see text). The irregularities in the fourth cumulant are due to the statistical fluctuations of Monte Carlo data. The first cumulant is the Rosenstock approximation.
(15); therefore the asymptotic value of the covariance may be used as an empirical estimator of the rate of convergence of the series of PFP approximations.

3. SOME RESULTS

The PFP is a rather fast algorithm: the only step that takes a sizable amount of time is the Monte Carlo program used to compute the averages $\left\langle p_{n} p_{n-1} \cdots p_{n-j+1}\right\rangle$. If n is the length of each random walk, N is the total number of walks generated, and j is the order of the approximation, then the program takes a time proportional to $2^{j} N n^{2}$, and a memory space proportional to $2 n$ for any lattice dimension (the run time is proportional to n^{2} because at each step during the generation of the random walk one must scan the previous steps to count the number of free adjacent sites).

The PFP is affected by two kinds of errors; statistical errors in the Monte Carlo used to compute the averages, and systematic errors intrinsic in the method. Statistical errors can be minimized by generating a large number of unrestricted random walks. The systematic errors can be reduced by going to higher orders and using the covariance (15) as a heuristic estimator of the accuracy of the PFP.

I have applied the PFP to symmetric 1D random walks with transitions to nearest neighbors and next-nearest neighbors, and to simple 3D random walks.

Fig. 3. The survival probabilities obtained from first- to fourth-order PFP for the 1 D simple random walk (dashed lines). The solid line is the asymptotically exact expression (13) (for $c=0.4$). The data are plotted vs. the scaling variable x (see text). The Rosenstock approximation (dots) is also shown for comparison.

Fig. 4. "Asymptotic" covariance $\operatorname{Cov}\left(p_{100} p_{99}\right)$ from the Monte Carlo data for the 1 D random walk with NN and NNN transitions. The crosses show the covariance vs. p, and the solid curve is only meant to guide the eye.

Take the 1 D random walk first, and let p be the probability that the random walker steps to one of its nearest neighbors (NN) and q the probability of stepping to one of the next-nearest neighbors (NNN) $(p+q=0.5)$. This walk becomes a simple random walk if $p=0.5$ or $q=0.5$.

I have generated 10^{5} unrestricted walks, 100 steps long, for each of 21 uniformly spaced values of the parameter p.

Figure 4 shows the "asymptotic" covariance, i.e., the covariance at $n=100$, which estimates the rate of convergence of the PFP. The covariance decreases for both low and high p 's, indicating that the procedure is more reliable when the random walk approximates a 1 D simple random walk.

Figure 5 shows $\log _{10}\left(f_{100}\right)$ from third-order PFP as function of the parameter p. Since $q=0.5-p$, it is easy to see that there is no symmetry between p and q.

Then I generated 10^{5} unrestricted 3D simple random walks, 200 steps long. In this case three are no asymptotic formulas for the survival probabilities, so I used a Monte Carlo procedure like that of Anlauf ${ }^{(4,8)}$ to estimate the quality of the PFP. The results of the simulation are shown in Fig. 6, together with the Rosenstock approximation, and the first- and fourth-order PFP. I wish to stress that the simple first-order PFP seems to be much better than the Rosenstock approximation, ${ }^{(4)}$ even though the computational effort is exactly the same. ${ }^{4}$

[^2]$$
\left\langle S_{n}\right\rangle \approx 0.662 n+0.525 n^{1 / 2}+0.501
$$

Fig. 5. Plot of $\log _{10}\left(f_{100}\right)$ vs. p for the 1 D random walk with NN and NNN transitions obtained from the third-order PFP (for $c=0.4$).

Fig. 6. The survival probabilities for the 3D simple random walk: the dots are the results of the Monte Carlo simulation "a la Anlauf" ${ }^{(8)}$ with $c=0.4$, the dotted curve is the Rosenstock approximation, while the solid lines show the first-order (lower curve) and the fourth-order (upper curve) PFP.
and recalling that $A_{n}=\left\langle S_{n}\right\rangle-\left\langle S_{n-1}\right\rangle$, one obtains the approximation

$$
\log f_{n} \approx \sum_{k=0}^{n} \log \left[1-c\left(0.662+0.2625 n^{-1 / 2}\right)\right]
$$

which turns out to be practically indistinguishable from the first-order approximation shown in Fig. 6.

Unfortunately, the simple exponential behavior is reached quite early even by the fourth-order approximation, and therefore it cannot be used to find the onset of the Donsker-Varadhan asymptotic regime having stretched exponential behavior. ${ }^{(7,10)}$

All the numerical calculations have been carried out on an Apple Macintosh IIfx and on a Digital VAX 9000. The simulation of the 1D unrestricted random walks with transitions to NN and to NNN to compute the averages needed by the third-order PFP was one of the longest, and it took 40 min of CPU time on the VAX.

4. CONCLUSIONS

I have introduced a new method (PFP) to compute the survival probabilities for random walks on lattices with traps. The PFP shares with the cumulant expansion the advantage of being independent of the trap concentration, and the disadvantage of not being analytic. The averages $\left\langle p_{n} p_{n-1} \cdots p_{n-j+1}\right\rangle$ needed by the PFP have to be computed by Monte Carlo simulation of unrestricted walks, but once this is done, they can be used for any trap concentration. In this sense PFP is much faster than the enumeration methods described in ref. $10 .{ }^{5}$

Moreover, the PFP is much more stable than the cumulant expansion (cfr. Fig. 2 and 3).

The PFP algorithm is easily adapted to widely different lattice topologies, neither run time nor memory space depend on the lattice dimensionality, and the first-order approximation (7) is so simple and performs so much better than the Rosenstock approximation that it might replace it.

Just as it happens for the other methods, it is quite difficult to estimate the systematic error of the PFP approximation. However, it is possible to reduce this systematic error by going to higher-order approximations, and to estimate empirically the rate of convergence of this series of approximations.

REFERENCES

1. G. H. Weiss and R. J. Rubin, Adv. Chem. Phys. 52:363-505 (1982).
2. J. W. Haus and K. W. Kehr, Phys. Rep. 150:263-406 (1987).

[^3]3. H. B. Rosenstock, Phys. Rev. 187:1166-1170 (1969).
4. G. H. Weiss, Proc. Natl. Acad. Sci. USA 77:4391-4392 (1980).
5. G. Zumofen and A. Blumen, J. Chem. Phys. 76:3713-3731 (1982).
6. W. Th. F. den Hollander, J. Stat. Phys. 37:331-367 (1984).
7. M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 28:525-565 (1975).
8. J. K. Anlauf, Phys. Rev. Lett. 52:1845-1848 (1984).
9. Th. M. Nieuwenhuizen, Phys. Rev. Lett. 62:357-360 (1989).
10. S. Havlin, G. H. Weiss, J. E., Kiefer, and M. Dishon, J. Phys. A 17:L347-L350 (1984);
S. Havlin, M. Dishon, J. E. Kiefer, and G. H. Weiss, Phys. Rev. Lett. 53:407-410 (1984).
11. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6:167-181 (1965).
12. R. C. Tausworthe, Math. Comp. 19:201-209 (1965).
13. S. W. Golomb, Shift Register Sequences, rev. ed. (Aegean Park Press, Laguna Hills, California, 1982).

[^0]: ${ }^{1}$ Dipartimento di Fisica dell'Universitá di Trieste and INFN-Sezione di Trieste, I-34127 Trieste, Italy.

[^1]: ${ }^{2}$ It is also quite easy to see that (8) is an approximate lower bound for (6). In fact when p_{n} is large it is easy to find, on average, a trapping site, and f_{n-1} must be small, and conversely if p_{n} is small, then f_{n-1} is large. Therefore $\left\langle p_{n} f_{n-1}\right\rangle\left\langle A_{n} f_{n-1}\right.$ and then $\left.f_{n}\right\rangle\left(1-c A_{n}\right) f_{n-1}$.

[^2]: ${ }^{4}$ As a side remark, notice that by combining the first-order approximation (7) with the fitting curve of Zumofen and Blumen ${ }^{(5)}$

[^3]: ${ }^{5}$ While these methods are actually much faster than brute-force Monte Carlo methods, they require a large amount of memory space. For a given trap concentration one can easily estimate the run time and the memory space to be proportional respectively to $n^{D} N_{c}$ and to n^{D}, where N_{c} is the number of simulated configurations with the given trap concentration, n is the length of the random walk, and D is the lattice dimension.

