
Journal of Statistical Physics, Vol. 68, Nos. 5/6, 1992 

Survival Probabilities for Random Walks on 
Lattices with Randomly Distributed Traps 

E d o a r d o  M i l o t t i  1 
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I present here a numerical procedure to compute survival probabilities for 
random walks on lattices with randomly distributed traps. The procedure has 
some advantages over existing methods, and its performance is evaluated for the 
1D simple random walk, for which some exact results are known. Thereafter, 
I apply the procedure to 1D random walks with variable step length and to 3D 
simple random walks. 

KEY WORDS: Lattice random walk; trapping; number of distinct lattice 
points visited; survival probabilities. 

1. I N T R O D U C T I O N  

R a n d o m  walks on lattices with randomly  distributed traps serve as models 
for many  physical processes in which absorpt ion and emission occur. (1"2~ In 
spite of their conceptual  clarity and simplicity, these models often defy 
exact mathematical  analysis. Indeed, most  of  the existing exact results are 
limited to 1D r andom walks with transitions to nearest neighbors only. 

Apparently,  the stochastic nature of  these models makes them well 
suited to brute-force Monte  Carlo simulations, but  in this case useful 
studies take up an enormous  amoun t  of computer  time. In fact, the prob- 
ability that  a r andom walker survives a n-step walk is a rapidly decreasing 
function of  n, and to explore the large-n behavior  one must  generate a huge 
number  of  r andom walks and r andom trap configurations. Moreover ,  the 
lower the concentra t ion of  traps, the higher the probabil i ty that  the 
r andom walker is t rapped at large n; therefore the scope of the method is 
rather limited. 
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The gap between exact results and brute-force simulations has been 
filled by several workers who have produced approximate results. Those 
studies concentrate mainly on two quantities: the number {Sn} of distinct 
sites visited by a random walker in an n-step unrestricted walk, and the 
n-step survival probabilities {f,} in the presence of traps. 

Basically, the relevance of the Sn's comes from their relationship with 
the fn's: 

L = ( ( 1 - - c )  s") (1) 

Here c is the concentration of traps and ( . )  denotes the average over all 
n-step unrestricted walks [in formula (1) the average over all trap 
configurations has already been taken]. In his original paper on lumines- 
cent emission in organic solids with traps Rosenstock (3~ approximated (1) 
by moving the average to the exponent: 

fn~(1  - c )  <s"> (2) 

The Rosenstock approximation (2) has been shown to work reasonably 
well only for very small concentrations (see, e.g., ref. 4). 

It turns out that (2) is just the first of a series of approximations 
derived after truncation of the so-called "cumulant expansion, ''(2) where the 
"cumulants" are simply expressed in terms of the central moments of the 
distribution P(Sn) of the Sn's. Only the first moment (Sn) can be com- 
puted without too much trouble using the generating function formalism, (5/ 
and analytic results also exist for the second central moment. However, to 
compute the higher moments, one must resort to Monte Carlo simulation 
of unrestricted walks. This is no longer a direct simulation of the trapping 
problem; hence it is free from the simulation time problems mentioned 
above. These expansions work quite well for short walks, but they all break 
down badly for longer walks. (2) 

In addition, I wish to mention a wealth of asymptotic formulas, both 
for the Sn's (6) and for the in'S(7-9): these formulas set the goal for all 
numerical efforts/8'1~ (Cfr. [8] and [10].) 

In this paper I present a numerical approximation which is in some 
way similar to the cumulant expansion and to the work of Zumofen and 
Blumen, (5) but which is much better behaved. In Section 2, I describe the 
approximation, apply it to the 1D simple random walk, and compare the 
numerical results with the asymptotic formula of Anlauf. (8) In Section 3, I 
give numerical results for the 1D random walk with transitions to nearest 
neighbors (NN) and next-nearest neighbors (NNN) and for the 3D simple 
random walk. 
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2. THE PROCEDURE 

Consider a simple random walker which has already taken n -  1 steps 
on the lattice. Some of the lattice sites that can be reached at the next step 
have already been visited, while others may be new to the walker. Let p ,  
be the fraction of new sites. Then p, is also the probability of visiting a new 
site at the nth step, and cpn is the probability of falling on a trap at the nth 
step. Therefore the probability that this walker is still free after the n th step 
is 

L = ( 1 - - c p , ) ~ n _ ,  (3) 

Thus 
n 

j7 = ]~ (1 - cpD (4) 
k=O 

where it is assumed that the origin may also be a trap, and one defines 
P 0 -  1. Then, taking the average over all walks, one has 

f , =  (~, ,)  = (1 -cpk) (5) 

Equation (5) can also be written as a recurrence formula: 

L = L - I - c ( p . f n  1) (6) 

Notice also that ( p . )  is just the average number of new sites visited by the 
random walker at the nth step, and therefore (p . )=A.  in the usual 
notation of M ontroll and Weiss.(11' 1 ) 

Equation (5) or (6) shows that if one neglects correlations, then 

f ~ z  l~I (1--cAk) (7) 
k = 0  

or, equivalently, 

f n  .~, (1 - -  c A n ) f n _  1 = f n  1 - -  r  1 ( 8 )  

Moreover, if c ~ 1, then 

l o g f , ~  ~ 1og(1--cAk)~ --c ~ Ak= -c (S , )  ~ (Sn)log(l-c) (9) 
k = 0  k = 0  

and one recovers the Rosenstock approximation (2). 2 

2 It is also quite easy to see that (8) is an approximate  lower bound  for (6). In fact when p .  
is large it is easy to find, on average, a t rapping site, and f .  1 mus t  be small, and conversely 
if p .  is small, then f . _  1 is large. Therefore ( p . f .  l ) < A , , f .  1 and then f .  > (1 - cA, ,) f , ,  1. 
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Equation (7) or (8) is still only an approximate formula, but one can 
do better by including some of the missing correlation, namely applying the 
recurrence formula (3) twice, so that 

L=(a-cpn)(1-cp._l)L_2 
=L-2--c(P,,+P,,-1)~-2+c2p,,Pn 1 L - 2  (10) 

After averaging, if one still neglects the correlations between the p. 's and 
the f. 's,  this gives 

L"~f~-2-c(A.+A.-l)f~ 2+c2(p.P. ,)f~-2 
=[1-c(A.+A.-~)+c2(p.P.-~)]f. 2 (11) 

Though still approximate, (11) displays explicitly the correlation between 
the two last steps: moreover, this correlation involves only probabilities 
that may be computed from unrestricted random walks. It is difficult to 
compute this correlation analytically, but it can be found by Monte Carlo 
simulation of unrestricted walks, just like the moments (S~ )  required 
for the cumulant expansions. It must also be remarked that in order to 
compute (11), one needs two starting values for the survival probabilities: 

f0=(1-c)  
(12) 

L=(1 -c)(1-c~1) 

(fl  is exact, since for all random walks Pl =31) .  
It is now possible to proceed further, and include the correlations 

among the last three steps, and so on. Then one obtains recurrence 
formulas similar to (11). Three or more starting values are required, and 
they must be found by direct enumeration. 

In what follows the procedure shall be denoted by PFP  (probability 
factorization procedure), and the 'Tth-order" PFP  is the approximation 
obtained by expanding the first j factors in expression (5). For example, 
(11) is the second-order approximation. The j th-order approximation 
requires j starting values. 

To test the PFP,  I used the asymptotically exact expression ~8) for the 
survival probabilities of the 1D simple random walk, 

8(2~ 1/2 2 3/2 exp ( - - ~ ) { 1  + 171 2051  3 1 1 5 1  
f. \3-~J 1-8 x 648 x 2 34992 x 3 

with 
(13) 

x = [- - n  log(1 - C)]2/3gl 1/3 (14) 
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Fig. 1. Some of the correlation terms from the Monte Carlo simulation of the unrestricted 
1D simple random walk. <p,,p,, 1>, (P,,P,, lPn 2>, and <p,,p,, IP.,-2P,-3> appear, 
respectively, as the top, middle, and bottom data. 

I computed the A,'s exactly, using a series inversion method similar to that 
used by Zumofen and Blumen, (5) and the averages <P,P,-1 ""P,-j+I> 
with a Monte Carlo simulation of the unconstrained walks. The starting 
values for the survival probabilities are easily found from direct enumera- 
tion of short walks. 3 I have generated 105 1D unrestricted simple random 
walks, 1000 steps long. To choose the direction of each step, I have used 
a Tausworthe-type random bit generator (12) with p = 9689, q = 4187, where 
p and q are the exponents in the (irreducible) polynomial associated with 
the random bit recurrence formula. (13) With such a generator one can 
safely simulate random walks less than 10  4 steps long, since linear 
relationships among bits appear only after p = 9689 steps. 

Figure 1 shows some of the correlation terms <p,p,,_~...p, j + l )  

3 It turns out that for all simple random walks on D-dimensional cubic lattices the first four 
pn'S a r e  constant, 

2 D  - -  1 2 D  - -  1 
P ~ 1 7 6  P I = A I = I '  P 2 = A 2 =  2 D  ' p 3 = A 3 -  2 D  

and therefore for these walks the calculation of the first five f . 's  is trivial, 

f o = f o = l - c ,  L = f l = ( 1 - c )  2 

/ 2 D -  1"~ / 2 D -  1"~ 2 

f4 = < (1 - -  cp4 ) J~3 > = < ( I  - -  r  = ( 1  - -  CzJ4) f3  
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obtained from the Monte Carlo program and used by PFP. The same 
program was used to compute the averages <Sn ~ ) (up to k = 4) needed for 
the cumulant expansion. The first four cumulant approximations of f~ are 
shown in Fig. 2, while the results of PFP up to fourth order are shown in 
Fig. 3. 

The computed values of f ,  are plotted versus x, the scaled step 
number of (14): the advantage of using x instead of n is that the plots, at 
least asymptotically, do not depend on the concentration (for the record, 
I always used c = 0.4 in these simulations). 

The PFP is free from the divergence problems of the cumulant expan- 
sion and seems to reproduce reasonably well the asymptotic behavior (13), 
at least for step numbers that are not too large. For large step numbers the 
correlation terms approach constant values, so that the approximated 
survival probabilities eventually behave like simple exponentials. 

The difference between the second and the first-order approximations 
[expressions (11) and (7), denoted by f ~ )  and f~l)] can be expressed by 

logf(~2)-logf(~l),~c2(<p~p, I)-A~A, l) 
=c 2Cov(p.p. ~) (15) 

Figure3 shows that with increasing order k the difference 
logf t~k+l)- logf~,  k) decreases and has the same order of magnitude as 

0 . . . . . . . . . .  . . . '  ' ' ' , , , '  ' ,',,,," 

~ _  4th,,," . . '"" 
.... ~ _  "2na -2- _J "/'" 

o~ <:ili:i 
3rd ',, ',,, ist 

-8 " "',, k ", 

x 

Fig. 2. The first four cumulant  approximations for the survival probabilities for the 1D 
simple random walk. The solid line is the asymptotically exact expression (13) (for c =0.4), 
while the dashed lines show the first four cumulants.  The data are plotted vs. the scaling 
variable x (see text). The irregularities in the fourth cumulant  are due to the statistical fluctua- 
tions of Monte  Carlo data. The first cumulant  is the Rosenstock approximation. 
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(15); therefore the asymptotic value of the covariance may be used as an 
empirical estimator of the rate of convergence of the series of PFP  
approximations. 

3. S O M E  R E S U L T S  

The PFP  is a rather fast algorithm: the only step that takes a sizable 
amount of time is the Monte Carlo program used to compute the averages 
(PnPn I " ' ' P , - j + I ) -  If n is the length of each random walk, N is the total 
number of walks generated, and j is the order of the approximation, then 
the program takes a time proportional to 2iNn 2, and a memory space 
proportional to 2n for any lattice dimension (the run time is proportional 
to n 2 because at each step during the generation of the random walk one 
must scan the previous steps to count the number of free adjacent sites). 

The PFP  is affected by two kinds of errors; statistical errors in the 
Monte Carlo used to compute the averages, and systematic errors intrinsic 
in the method. Statistical errors can be minimized by generating a large 
number of unrestricted random walks. The systematic errors can be 
reduced by going to higher orders and using the covariance (15) as a 
heuristic estimator of the accuracy of the PFP. 

I have applied the PFP  to symmetric 1D random walks with tran- 
sitions to nearest neighbors and next-nearest neighbors, and to simple 3D 
random walks. 

-2- ~'~"=" "�84184184184184184 �9 "%~- 
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Fig. 3. The survival probabilities obtained from first- to fourth-order PFP for the 1D simple 
random walk (dashed lines). The solid line is the asymptotically exact expression (13) (for 
c = 0.4). The data are plotted vs. the scaling variable x (see text). The Rosenstock approxima- 
tion (dots) is also shown for comparison. 
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Fig. 4. "Asymptotic" covariance Cov(p100P99 ) from the Monte Carlo data for the 1D 
random walk with NN and NNN transitions. The crosses show the covariance vs. p, and the 
solid curve is only meant to guide the eye. 

Take the 1D random walk first, and let p be the probability that the 
random walker steps to one of its nearest neighbors (NN) and q the 
probability of stepping to one of the next-nearest neighbors (NNN) 
( p + q = 0 . 5 ) .  This walk becomes a simple random walk if p = 0 . 5  or 
q=0.5 .  

I have generated 105 unrestricted walks, 100 steps long, for each of 21 
uniformly spaced values of the parameter p. 

Figure 4 shows the "asymptotic" covariance, i.e., the covariance at 
n =  100, which estimates the rate of convergence of the PFP. The 
covariance decreases for both low and high p's, indicating that the 
procedure is more reliable when the random walk approximates a 1D 
simple random walk. 

Figure 5 shows loglo(floo) from third-order PFP  as function of the 
parameter p. Since q = 0 . 5 - p ,  it is easy to see that there is no symmetry 
between p and q. 

Then I generated 105 unrestricted 3D simple random walks, 200 steps 
long. In this case three are no asymptotic formulas for the survival 
probabilities, so I used a Monte Carlo procedure like that of Anlauf (4'8) to 
estimate the quality of the PFP. The results of the simulation are shown in 
Fig. 6, together with the Rosenstock approximation, and the first- and 
fourth-order PFP. I wish to stress that the simple first-order P F P  seems to 
be much better than the Rosenstock approximation, (4) even though the 
computational effort is exactly the same. 4 

4 As a side remark, notice that by combining the first-order approximation (7) with the fitting 
curve of Zumofen and Blumen ~5) 

( S , )  ~ 0.662n + 0.525n 1/2 + 0.501 
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Fig. 5. 
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Plot of logl0(fl0o) vs. p for the 1D random walk with NN and N N N  transitions 
obtained from the third-order P F P  (for c = 0.4). 
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Fig. 6. The survival probabilities for the 3D simple random walk: the dots are the results of 
the Monte  Carlo simulation "fi la Anlauf  'C8) with c = 0.4, the dotted curve is the Rosenstock 
approximation, while the solid lines show the first-order (lower curve) and the fourth-order 
(upper curve) PFP. 

and recalling that A .  = < S . )  - < S . _  L>, one obtains the approximation 

n 

l o g f , ~  ~, l o g [ 1 - c ( 0 . 6 6 2 + 0 . 2 6 2 5 n  1/2)] 
k = 0  

which turns out to be practically indistinguishable from the first-order approximation shown 
in Fig. 6. 
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Unfortunately, the simple exponential behavior is reached quite early 
even by the fourth-order approximation, and therefore it cannot be used to 
find the onset of the Donsker-Varadhan asymptotic regime having 
stretched exponential behavior.(7'1~ 

All the numerical calculations have been carried out on an Apple 
Macintosh Ilfx and on a Digital VAX 9000. The simulation of the 1D 
unrestricted random walks with transitions to NN and to NNN to com- 
pute the averages needed by the third-order PFP was one of the longest, 
and it took 40 min of CPU time on the VAX. 

4. C O N C L U S I O N S  

I have introduced a new method (PFP) to compute the survival 
probabilities for random walks on lattices with traps. The PFP shares with 
the cumulant expansion the advantage of being independent of the trap 
concentration, and the disadvantage of not being analytic. The averages 
(PnP~ 1""P~-i+1) needed by the PFP have to be computed by Monte 
Carlo simulation of unrestricted walks, but once this is done, they can be 
used for any trap concentration. In this sense PFP is much faster than the 
enumeration methods described in ref. 10. 5 

Moreover, the PFP is much more stable than the cumulant expansion 
(cfr. Fig. 2 and 3). 

The PFP algorithm is easily adapted to widely different lattice 
topologies, neither run time nor memory space depend on the lattice 
dimensionality, and the first-order approximation (7) is so simple and 
performs so much better than the Rosenstock approximation that it might 
replace it. 

Just as it happens for the other methods, it is quite difficult to estimate 
the systematic error of the PFP approximation. However, it is possible to 
reduce this systematic error by going to higher-order approximations, 
and to estimate empirically the rate of convergence of this series of 
approximations. 
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